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Abstract. Two different free-energy functional approximations, which are the hybrid-weighted-
density approximation (HWDA) and global hybrid-weighted-density approximation (GHWDA)
proposed by Kim, Calleja and Rickayzen, have been applied in the study of the density profiles
of hard-sphere and Lennard-Jones fluids confined in spherical cages. For the density profiles of
hard-sphere fluid, both the HWDA and the GHWDA at lower density are in a good agreement
with the computer simulations. However, at higher densityρσ 3 = 0.75 the GHWDA shows
better agreement than the HWDA and compares well with the computer simulations. For the
Lennard-Jones fluid, the density-functional perturbation theory (DFPT) based on the second-
order perturbation theory of the uniform liquid has been examined. The calculated results show
that the DFPT compares well with computer simulations although the agreement deteriorates
slightly as the temperature of the Lennard-Jones fluid is reduced.

1. Introduction

In a recent paper [1], we have proposed the hybrid-weighted-density approximation
(HWDA) and global hybrid-weighted-density approximation (GHWDA). In one of the
approximations the weighted function is constructed to satisfy the same homogeneous
properties as the local weighted-density approximation (LWDA) proposed by Tarazona (see
[2, 3, 4]); in the other, the weighting function is constructed to agree with that of Leidl
and Wagner [5] for the homogeneous fluid. We have derived the free-energy functional
approximations, which are mathematically less intensive forms, from two hybrid-weighted-
density approximations. We have applied the free-energy functional approximations in
investigating the structural properties of nonuniform hard-sphere fluid restricted by hard and
permeable walls. For the hard-sphere fluid confined between planar hard walls, the results
for the HWDA are almost indistinguishable from those for the LWDA of Tarazona, although
at the highest density investigated the HWDA is in closer agreement with simulation. When
the walls are permeable, the HWDA produced profiles are again almost indistinguishable
from the due to Tarazona’s theory except near the centre of a permeable wall. However,
although we did not publish the results for the GHWDA for the density profiles of hard-
sphere fluid restricted by hard walls and permeable walls [6], the comparisons with those
of the HWDA show that for the hard-sphere fluid confined between planar hard walls the
GHWDA is better than for the HWDA compared with the computer simulation, whereas for
the hard-sphere fluid confined by permeable walls the HWDA is better than the GHWDA
for a wide range of parameters. These results suggest that the structural properties of hard-
sphere fluid depend on the geometrical features of walls as well as the wall potentials.
Thus, we have applied the HWDA and GHWDA in studying the structural properties of
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hard-sphere and Lennard-Jones fluids confined in spherical cages because (i) less intensive
studies have been reported for the spherical cages rather than slit or cylindrical pores [7]
and (ii) the free-energy functional approximation for the hard-sphere fluid can be used as a
reference system for the perturbative analysis of Lennard-Jones fluid. For the Lennard-Jones
fluid, the density-functional perturbation theory (DFPT) [8, 9, 10] based on the second-order
perturbation theory of the uniform liquid has been used.

In section 2, we will apply two different free-energy functional approximations, the
HWDA and GHWDA, to predict the density profiles of hard-sphere fluid confined in a
spherical cage with a hard structureless wall. We will compare our results with other
model approximations and computer simulations. In section 3, we will use the DFPT to
investigate the structural behaviour of Lennard-Jones fluid confined in a spherical cage.
A brief discussion on the strengths and weakness of the HWDA and GHWDA in future
applications are included in the final section.

2. Density profiles of hard-sphere fluid

For the system of hard-sphere fluid confined in a spherical hard-wall cage of radiusR, the
resulting density profile equation [1] is given by

ρ(r) =
{

ρb exp[c(1)(r; [ρ]) − c(1)(ρb)] r < R

0 r > R
(1)

where ρb is the bulk density of hard-sphere fluid, andc(1)(ρb) and c(1)(r; [ρ]) are the
one-particle direct correlation functions of hard-sphere fluid in the homogeneous and
inhomogeneous states, respectively. The one-particle direct correlation functionc(1)(r: [ρ])
appearing in equation (1) is defined as

c(1)(r: [ρ]) = −δβF [ρ]ex
δρ(r)

(2)

whereβ = 1/kBT , andF [ρ]ex is the excess free energy arising from the particle interaction.
For the HWDA and GHWDA [1],c(1)(r; [ρ]) is given by

c(1)(r; [ρ]) = −βf (ρ̄(r)) − β

∫
ds ρ(s)f ′(ρ̄(s))

δρ̄(s)

δρ(r)
(3)

and forc(1)(ρb)

c(1)(ρb) = −βf (ρb) − βρf ′(ρb) (4)

where
δρ̄(s)

δρ(r)
= ω(r − s, ρ̃(s)) + ω(r − s, ρ)

∫
dt ρ(t)ω′(s − t, ρ̃(s)). (5)

The density profiles are obtained by the numerical interaction between the old density
profiles on the right-hand side and the new one on the left-hand side in equation (1). In
applying equation (1), the excess free energy per particle of hard-sphere fluid,f (ρ), is taken
from the quasi-exact Carnahan–Starling equation of state [11]:

βf (ρ) = η(4 − 3η)

(1 − η)2
(6)

whereη = πρσ 3/6 andσ is the hard-sphere diameter.
In this case, two densities,ρbσ

3 = 0.62 with N = 277 andρbσ
3 = 0.75 with N = 342,

are investigated for the density profiles of hard-sphere fluid confined in spherical hard-wall
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cages withR = 4.5σ , whereN is the total number of particles in the spherical cage. The
resulting density profiles for the confined hard-sphere fluid are displayed in figures 1 and 2,
and compared with the results of computer simulations [7]. As we can see in figure 1, the
calculated results for the HWDA and the GHWDA for the lower density ofρbσ

3 = 0.62
are in excellent agreement with those obtained from the computer simulations. However,
for the higher density ofρbσ

3 = 0.75, the GHWDA is well reproduced qualitatively and
quantitatively compared with the computer simulations, whereas for the HWDA the position
of the first peak is slightly shifted and the first oscillation is slightly underestimated. In
particular, the hard-sphere oscillatory structures of HWDA near the centre of a spherical
cage (r = 0) show different behaviours compared with those of the GHWDA and the
computer simulations; the density atr = 0 is greater than that of the next peak and is
well above 1. This effect near the centre can be seen in the LWDA of Tarazona although
the density atr = 0 is slightly lower than that for the GHWDA [12]. Actually, we can
expect this effect when the radiusR is very small and the densityρbσ

3 is high. However,
R = 4.5σ is not big andρbσ

3 = 0.75 is not high compared with the freezing density of
hard-sphere fluidρbσ

3 = 0.94 [13]. This is what one would expect. In fact, the statistics
in the computer simulations are not good near the centre of a spherical cage because of the
small number of particles near the centre in the simulations. Nevertheless, the simulation
density profiles also appear to be tending to the bulk density at the centre. It is very difficult
to understand the density behaviour near the centre on physical grounds as well as that of
the LWDA of Tarazona. Thus, we can conclude here that the GHWDA, compared with the
HWDA, describes the structural properties of hard-sphere fluid well.

3. Density profiles of Lennard-Jones fluid

We consider the density profiles of Lennard-Jones fluid confined in a spherical cage. The
excess free energyF [ρ]ex arising from the particle interaction can be generally written as
[14]

F [ρ]ex = 1
2

∫
dr ρ(r)

∫
ds ρ(s)u(r − s)

∫ 1

0
dλ g(r, s; [λρ]) (7)

whereλ is the charging parameter,u(r) the intermolecular potential of fluids, andg(r; [ρ])
the pair correlation function of fluids. For the Lennard-Jones fluid, the intermolecular
potentialu(r) is given by

u(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

(8)

whereε andσ are the parameters of interaction strength and interaction range respectively.
Since little is known about the pair correlation functiong(r; [ρ]) for the Lennard-Jones
potentials, we use the perturbation theory for calculating the excess free energy, equation (7).
For this, we divide the excess free energyF [ρ]ex into repulsive and attractive contributions:

F [ρ]ex = F rep[ρ] + Fatt [ρ]. (9)

Then, we can also decompose the Lennard-Jones potential into repulsive and attractive parts
as follows:

urep(r) =
{

u(r) for r < σ

0 for r > σ
(10)
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Figure 1. Density profiles of hard-sphere liquid confined in a spherical cage with a hard structure
wall (ρbσ

3 = 0.62). The open circles are from the computer simulations [7]. The solid and
dotted lines correspond to the HWDA and GHWDA, respectively.

and

uatt (r) =
{

0 for r < σ

u(r) for r > σ .
(11)

In the perturbation theory of classical fluids, the repulsive partF rep[ρ] is subsequently
represented by the hard-sphere contribution, whereas the attractive contributionFatt [ρ] is
treated as the perturbation term. Since the free energyF rep[ρ] corresponding to the hard
sphere is also unknown, one proceeds by making a further approximation forF rep[ρ]. There
are many different approximations for the calculation of the repulsive contributionF rep[ρ].
Among these approximations, it is well known that the weighted-density approximations
describe the structural properties of hard-sphere fluid well. Thus, the HWDA and GHWDA
have been used for the calculation of the repulsive contributionF rep[ρ].

For the attractive contributionFatt [ρ], there are two well known perturbation theories
[8, 9], which are the density-functional mean-field approximation (DFMFT) based on the
mean-field theory, and the density-functional perturbation theory (DFPT) in which is
combined the nonlocal density-functional model of an inhomogeneous hard-sphere system
with the Barker–Henderson second-order perturbation theory [15] of uniform simple fluids.
The latter originally comes from applying to the inhomogeneous fluids the so-called
macroscopic compressibility approximation, which was suggested by Barker and Henderson
[15]. This approach partially incorporates the effects of potential fluctuation caused by
the attractive interaction between fluid particles, so all particles are forced to move into
energetically favourable positions under the constraint of hard-core exclusion. These
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Figure 2. As figure 1, except thatρbσ
3 = 0.75.

perturbation theories have been examined by many authors [8, 9, 10] in investigating the
density profiles of Lennard-Jones fluid confined in structureless hard walls and spherical
cages. Notice here that Sambroskiet al [9] have used the DFMFT theory to study the
structural behaviour of Lennard-Jones fluid confined in spherical cages. They have shown
that over a wide range of fluid densities the DFPT is better than the DFMFT and comparable
with the computer simulations. Thus, we have here introduced the DFPT to study the density
profiles of Lennard-Jones fluid confined in spherical walls. In the DFPT, the attractive term
Fatt [ρ] is assumed to be

Fatt [ρ] = 1
2

∫
dr ρ(r)

∫
ds ρ(s)ghs(r − s; ρ̄)uatt (r − s)

− β

4

∫
dr ρ(r)

∫
ds ρ(s)ghs(r − s; ρ̄)α(ρ̄)[uatt (r − s)]2 (12)

whereρ̄ = ρ[(r+s)/2] andghs(r−s; ρ̄) is the pair correlation function of hard-sphere fluid
with the densityρ̄. In the uniform fluids, equation (12) reduces to the Barker–Henderson
second-order perturbation theory. The qualityα(ρ) is taken to be the compressibility of
hard-sphere fluid as follows:

α(ρ) = 1

β

(
∂ρ

∂P

)hs

= (1 − η)4

1 + 4η + 4η2 − 4η3 + η4
(13)

whereη = πρd3/6, P is the pressure of hard-sphere fluid, andd is the equivalent hard-
sphere diameter. The Barker–Henderson criterion (see [16]) is used to determine the
equivalent hard-sphere diameterd:

d =
∫

dr [1 − exp(−βurep(r))] (14)
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whered depends on the temperature but not on the density. From equations (2) and (9), we
can easily obtain the one-particle direct correlation functions for the attractive contribution;
c(1)(r; [ρ])att andc(1)(ρ)att . For thec(1)(r; [ρ])att

c(1)(r; [ρ])att = −
∫

ds ρ(s)uatt (r − s) + β

2

∫
ds ρ(s)ghs(r − s; ρ̄)α(ρ̄)[uatt (r − s)]2

(15)

and for thec(1)(ρb)
att

c(1)(ρb)
att = −ρb

∫
ds uatt (r − s) + β

2
ρb

∫
ds ghs(r − s; ρb)α(ρb)[u

att (r − s)]2. (16)

Then, the resulting density profile equation for the Lennard-Jones fluid is given by

ρ(r) =
{

ρb exp[c(1)(r; [ρ])rep + c(1)(r; [ρ])att − c(1)(ρb)
rep − c(1)(ρb)

att ] r < R

0 r > R

(17)

where c(1)(r; [ρ])rep and c(1)(ρb)
rep represent repulsive contributions and are given by

equations (3) and (4). The density profiles are obtained by the numerical iteration between
the old density profiles on the right-hand side and the new one on the left-hand side in
equation (17).

Figure 3. Density profiles of Lennard-Jones fluid confined in a spherical cage at the reduced
temperature of 2.719. The open circles are from the computer simulations [7]. The solid and
dotted lines correspond to the HWDA and GHWDA, respectively.

The resulting density profiles for the confined Lennard-Jones fluid are displayed in
figures 3, 4 and 5, and compared with the computer simulations [7]. In these plots the
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Figure 4. As figure 3, but withT = 1.953.

length, volume, and temperature are measured in units ofσ , σ 3, andε/kB , respectively. In
terms of these units, the critical point for the DFPT isTc = 1.303 andρc = 0.275, whereas
for the computer simulationsTc = 1.36 andρc = 0.36. The Verlet–Weis approximation
(see [17, 18]) has been used to calculate the hard-sphere pair correlation functionghs(r, ρ)

appearing in equations (15) and (16). Through these calculations, the total number of
particles in the pore,N = 266, is kept as a constant to compare with the computer
simulations:

N = 4π

∫ R

0
dr r2ρ(r). (18)

As can be seen from figure 3, the DFPT at the reduced temperatureT = 2.714 compares
with the computer simulations. The results at the temperature of 1.953 are shown in figure 4.
These results also show that the DFPT compares with the computer simulations. Figures 3
and 4 lead to the conclusion that at a temperature higher than the critical temperature the
DFPT shows reasonably good agreement with the computer simulations. Figure 5 shows
the density profiles at the temperature of 1.19—lower than the critical temperature of 1.36.
At temperatures lower than the critical temperature the DFPT also shows reasonably good
agreements with the computer simulations, although agreement deteriorates slightly as the
temperature of Lennard-Jones fluid is reduced. However, the overall picture demonstrates
that both the HWDA and GHWDA and the DFPT successfully describe the inhomogeneous
properties of Lennard-Jones fluid confined in spherical cages.
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Figure 5. As figure 3, but withT = 1.19.

4. Results and discussion

Two different free-energy functional approximations, the HWDA and GHWDA, have been
applied in the study of the density profiles of hard-sphere and Lennard-Jones fluids confined
in spherical cages. Unlike for the density profiles of hard-sphere fluids restricted by
permeable walls [1, 6], for the density profiles of hard-sphere fluid confined in spherical
cages the GHWDA results show better agreement than the HWDA results, and compare
with the computer simulations. Here, the interesting thing is that at higher density the
HWDA does not describe correctly the physical behaviour of hard-sphere fluid near the
centre of a spherical cage. For the Lennard-Jones fluid, the DFPT compares well with
the computer simulations although the agreement deteriorates slightly as the temperature
of Lennard-Jones fluid is reduced. However, the overall picture demonstrates that both the
HWDA and the GHWDA and the DFPT successfully describe inhomogeneous properties
of Lennard-Jones fluid, although the GHWDA is in closer agreement with the computer
simulations than the HWDA. From the various applications as well as for the fluids restricted
by hard and permeable walls we can conclude that the structural properties of fluids depend
on the geometrical features of walls as well as the wall potentials.

On the other hand, the free-energy functional approximation presented here can be
applied to the liquid–solid freezing transition of other systems such as Lennard-Jones fluid;
such systems with soft repulsions are notoriously difficult to study as regards freezing
transitions and constitute a stern test for any theory [19, 20]. Therefore, we intend to use
the proposed HWDA and GHWDA to study the freezing problem of classical fluids. We
hope to investigate these problems in the near future.
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